Role of P63 (CKAP4) in binding of surfactant protein-A to type II pneumocytes.

نویسندگان

  • Sandra R Bates
  • Altaf S Kazi
  • Jian-Qin Tao
  • Kevin J Yu
  • Daniel S Gonder
  • Sheldon I Feinstein
  • Aron B Fisher
چکیده

We have recently described a putative receptor for lung surfactant protein-A (SP-A) on rat type II pneumocytes. The receptor, P63, is a 63-kDa type II transmembrane protein. Coincubation of type II cells with P63 antibody (Ab) reversed the inhibitory effect of SP-A on secretagogue-stimulated surfactant secretion from type II cells. To further characterize SP-A interactions with P63, we expressed recombinant P63 protein in Escherichia coli and generated antibodies to P63. Immunogold electron microscopy confirmed endoplasmic reticulum and plasma membrane localization of P63 in type II cells with prominent labeling of microvilli. Binding characteristics of iodinated SP-A to type II cells in the presence of P63 Ab were determined. Binding (4 degrees C, 1 h) of (125)I-SP-A to type II cells demonstrated both specific (calcium-dependent) and nonspecific (calcium-independent) components. Ab to P63 protein blocked the specific binding of (125)I-SP-A to type II cells and did not change the nonspecific SP-A association. A549 cells, a pneumocyte model cell line, expressed substantial levels of P63 and demonstrated specific binding of (125)I-SP-A that was inhibited by the P63 Ab. The secretagogue (cAMP)-stimulated increase in calcium-dependent binding of SP-A to type II cells was blocked by the presence of P63 Ab. Transfection of type II cells with small interfering RNA to P63 reduced P63 protein expression, attenuated P63-specific SP-A binding, and reversed the ability of SP-A to prevent surfactant secretion from the cells. Our results further substantiate the role of P63 as an SP-A receptor protein localized on the surface of lung type II cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the PI3-kinase signaling pathway in trafficking of the surfactant protein A receptor P63 (CKAP4) on type II pneumocytes.

Surfactant protein A (SP-A) plays an important role in the maintenance of lung lipid homeostasis. Previously, an SP-A receptor, P63 (CKAP4), on type II pneumocyte plasma membranes (PM) was identified by chemical cross-linking techniques. An antibody to P63 blocked the specific binding of SP-A to pneumocytes and the ability of SP-A to regulate surfactant secretion. The current report shows that ...

متن کامل

Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-63), a surfactant protein A binding protein, on type II pneumocytes.

Surfactant protein A (SP-A) binds to alveolar type II cells through a specific high-affinity cell membrane receptor, although the molecular nature of this receptor is unclear. In the present study, we have identified and characterized an SP-A cell surface binding protein by utilizing two chemical cross-linkers: profound sulfo-SBED protein-protein interaction reagent and dithiobis(succinimidylpr...

متن کامل

Surfactant protein A blocks recognition of Pseudomonas aeruginosa by CKAP4/P63 on airway epithelial cells.

We used isogenic mutant strains that were deficient or over-expressed capsule to study the function of the alginate exopolysaccharide in the interaction of Pseudomonas aeruginosa with the human airway epithelial cells (AEC) in the presence or absence of surfactant protein A (SP-A). SP-A prevented the invasion of AEC by alginate-producing P. aeruginosa strains because of a direct effect on the A...

متن کامل

Functional regulation of tissue plasminogen activator on the surface of vascular smooth muscle cells by the type-II transmembrane protein p63 (CKAP4).

We have demonstrated that tissue plasminogen activator (tPA) binds specifically to human vascular smooth muscle cells (VSMC) in a functionally relevant manner, both increasing plasminogen activation and decreasing tPA inhibition (Ellis, V., and Whawell, S. A. (1997) Blood 90, 2312-2322; Werner, F., Razzaq, T. M., and Ellis, V. (1999) J. Biol. Chem. 274, 21555-21561). To further understand this ...

متن کامل

Nitric oxide decreases surfactant protein gene expression in primary cultures of type II pneumocytes.

Inhaled nitric oxide (NO) is a selective pulmonary vasodilator effective in treating persistent pulmonary hypertension in newborns and in infants following congenital heart disease surgery. Recently, multiple in vivo and in vitro studies have shown a negative effect of NO on surfactant activity as well as surfactant protein gene expression. Although the relationship between NO and surfactant ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 295 4  شماره 

صفحات  -

تاریخ انتشار 2008